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1. Introduction

In this paper we introduce a generalization of the Schwinger-Dyson equation for dynamical

systems whose classical equations of motion are not required to follow from the least action

principle. The generating functional of Green’s functions, being a solution of the generalized

Schwinger-Dyson equation, defines quantum correlators in non-Lagrangian field theory.

It has been recently shown [1] that any classical field theory in d dimensions, be it

Lagrangian or not, can be converted into an equivalent Lagrangian topological field theory

(TFT) in d + 1 dimensions. Path integral quantizing this effective Lagrangian TFT, one

gets correlators for the original non-Lagrangian theory in d dimensions. If the original field

theory admits an action principle, the path integral for the enveloping (d + 1)-dimensional

TFT can be explicitly integrated out in the bulk with the result that reproduces the

standard Batalin-Vilkovisky quantization receipt [2, 3] for the original Lagrangian gauge

theory. Thus, at least one systematic method is known of constructing quantum correlators

for general non-Lagrangian systems. In the present paper, we formulate a generalization of

the Schwinger-Dyson equation for non-Lagrangian theories that defines Green’s functions

in terms of the original space, i.e., without recourse to embedding into a Lagrangian TFT

in d + 1 dimensions. Below in the introduction, we give some elementary explanations of

the main idea behind our construction. More rigorous and detailed exposition is given in

the subsequent sections.

Consider the dynamics of fields φ = {φi} governed by the equations of motion1

Ta(φ) = 0 . (1.1)

1Hereinafter we use De Witt’s condensed notation [4], whereby the superindex “i” comprises both the

local coordinates on a d-dimensional space-time manifold M and possible discrete indices labelling different

components of φ. As usual, the repeated superindices, e.g. φiψi, imply summation over the discrete indices

and integration over the space-time coordinates w.r.t. an appropriate measure on M . The partial derivatives

∂i = ∂/∂φi are understood as variational ones.
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These equations are not assumed to come from the least action principle, so the indices

“i” and “a”, labelling the fields and the equations, may belong to different sets completely

unrelated to each other. For a Lagrangian theory, however, these indices must coincide

because

Ti(φ) =
∂S(φ)

∂φi
, (1.2)

where S is an action functional. The standard Schwinger-Dyson equation [5] for the gen-

erating functional of Green’s functions Z(J) reads

T̂iZ(J) = 0, T̂i = −Ji + Ti(φ)|
φ 7→i~ ∂

∂J

. (1.3)

To avoid further restrictions on Z(J), the operators T̂i must commute with each other,

which requires the equations of motion to be Lagrangian:

[T̂i, T̂j ] = i~(∂iTj − ∂jTi)|φ 7→i~ ∂
∂J

= 0 ⇔ Ti = ∂iS , (1.4)

for some action S.

One can regard the Schwinger-Dyson operators T̂i as those resulting from the canonical

quantization of the abelian first-class constraints

Ti(φ, J) = Ti(φ) − Ji , {Ti, Tj} = 0 . (1.5)

Here we consider the sources Ji as the momenta canonically conjugate to the fields φi,

{φi, φj} = 0 , {φi, Jj} = δi
j , {Ji, Jj} = 0 , (1.6)

and use the momentum representation to pass from functions to operators:

Ĵi = Ji· , φ̂i = i~
∂

∂J i
. (1.7)

Since the constraints (1.5) are explicitly solved w.r.t. the momenta J , they must

be abelian whenever they are first class. So, the property of the equations of motion

to be Lagrangian is equivalent to the property of the constraints (1.5) to be first class.

One can also quantize the constraints (1.5) in the coordinate representation related to the

momentum one by the Fourier transform:

T̂i = Ti(φ) + i~
∂

∂φi
. (1.8)

Imposing this constraint operator on a “state” Ψ(φ) which is the Fourier transform of the

generating functional Z(J), yields

[
Ti(φ) + i~

∂

∂φi

]
Ψ(φ) = 0 . (1.9)

For Lagrangian equations of motion (1.2), the solution is given by the Feynman probability

amplitude

Ψ(φ) = (const)e
i
~
S(φ) . (1.10)
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Thus, from the viewpoint of the phase space (1.6) of fields and sources, the Schwinger-Dyson

equation is nothing but imposing the quantum first-class constraints (1.5) on the probability

amplitude. Given the generating functional or corresponding probability amplitude, the

quantum average of an observable O(φ) is given by the path integral

〈O〉 =

∫
DφO(φ)Ψ(φ) = O

(
i~

∂

∂J

)
Z(J)|J=0 , (1.11)

where Dφ is an integration measure on the configuration space of fields.

Notice that the constraints (1.5) start with the classical equations of motion T (φ)

which are always Poisson commuting w.r.t. (1.6), be the equations Lagrangian or not. It is

a common practice to regard the equations of motion as constraints in the space of fields,

see e.g. [3], so it might be interesting to impose the classical equations themselves on the

probability amplitude without adding the momentum term J to T :

T (φ)Ψ(φ) = 0 . (1.12)

The solution is obvious,

Ψ(φ) ∼ δ(T (φ)) . (1.13)

The function Ψ(φ) is the classical probability amplitude in the sense that the quantum

average of any observable O(φ) would be proportional to its classical on-shell value when

calculated with this amplitude:

〈O〉 = (const)

∫
Dφ δ(T (φ))O(φ) ∼ O(φ0) , (1.14)

φ0 being a solution to the classical field equations (1.1). The classical probability am-

plitude (1.13) was introduced and studied by Gozzi et al [6] for Hamiltonian equations

of motion. It was also shown in [6] that (1.13) is a classical limit of Feynman’s ampli-

tude (1.10).

A twofold general conclusion can be derived from these simple observations. First,

taking the classical limit for the Schwinger-Dyson equation means the omission of the

momentum term in the first class constraints (1.5). To put this another way, quantizing

means extending the classical equations of motion, viewed as constraint operators imposed

on the probability amplitude, by appropriate momentum terms so that the constraints

remain first class. The second simple lesson is that the classical equations of motion,

being viewed as quantum constraints, are first class, be the original equations Lagrangian

or not. Regarding these observations, the way seems straightforward of constructing the

generalization of the Schwinger-Dyson equation for non-Lagrangian classical systems: The

Schwinger-Dyson operators are to be constructed by extending the general equations (1.1)

with momentum terms. These momentum terms are to be sought for from the condition

that the momentum-extended constraints must be first class.

Proceeding from the heuristic arguments above, we can take the following ansatz for

the φJ-symbols of the Schwinger-Dyson operators:

Ta(φ, J) = Ta(φ) + V i
a(φ)Ji + O(J2) . (1.15)

– 3 –
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These operators are defined as formal power series in momenta (sources) J with leading

terms being the classical equations of motion. Requiring the Hamiltonian constraints Ta =

0 to be first class, i.e.,

{Ta, Tb} = U c
abTc , U c

ab(φ, J) = Cc
ab(φ) + O(J) , (1.16)

one gets an infinite set of relations on the structure coefficients in the expansion of Ta(φ, J)

in J . In particular, examining the involution relations (1.16) to zero order in J we get

V i
a∂iTb − V i

b ∂iTa = Cc
abTc . (1.17)

The value V i
a(φ) defined by this relation is called the Lagrange anchor. It has been first

introduced in the work [1] with a quite different motivation. The Lagrange anchor is a key

geometric ingredient for converting a non-Lagrangian field theory in d dimensions into an

equivalent Lagrangian TFT in d + 1 dimensions [1].

If the field equations (1.1) are Lagrangian, one can choose the Lagrange anchor to be

−δi
j . This choice results in the standard Schwinger-Dyson operators (1.3), (1.5) having

abelian involution (1.4). For general equations of motion (1.1), the Lagrange anchor has

to be field-dependent (that implies non-abelian involution (1.16), in general) and is not

necessarily invertible. Existence of the invertible Lagrange anchor is equivalent to existence

of a Lagrangian for the equations (1.1). Zero anchor (V = 0) is admissible for any equations

of motion, Lagrangian or non-Lagrangian, as it obviously satisfies (1.17). The zero anchor,

however, leads to a pure classical equation (1.12) for the probability amplitude, and no

quantum fluctuations would arise in such theory. Any nonzero Lagrange anchor, invertible

or not, allows one to construct the generating functional of Green functions describing

nontrivial quantum fluctuations.

Given the Lagrange anchor, the requirement for the symbols of the Schwinger-Dyson

operators (1.15) to be the first class constraints (1.16) will recursively define all the higher

terms in (1.15) as we explain in the next section. Since the general Lagrange anchor results

in the non-abelian algebra (1.16) of the Schwinger-Dyson operators, the naive imposing of

these operators on the generating functional Z(J) or probability amplitude Ψ(φ)

T̂aΨ(φ) = 0 (1.18)

could be not a self-consistent procedure. As always with non-abelian constraints, the BFV-

BRST formalism [7, 3] gives the most systematic method to handle all the consistency

conditions of the constraint algebra. Instead of naively imposing constraint operators, the

BFV-BRST method implies seeking for the probability amplitudes defined as cohomology

classes of the nilpotent operator associated to the first class constraints. So, constructing

the BRST operator for the Schwinger-Dyson constraints (1.15), (1.16), we will get the

equation defining quantum correlators for the non-Lagrangian theory. Notice that for the

Lagrangian field theory, it was known long ago [10, 3] that the Schwinger-Dyson equation

can be reinterpreted as the Ward identity for an appropriately introduced BRST symmetry.

This idea, as we will see, still allows the derivation of the Schwinger-Dyson equation for non-

Lagrangian field theory by making use of the BRST symmetry related with the Langange

anchor.
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The paper is organized as follows. In section 2, we recall some results from ref. [1].

In particular, we describe the classical BRST complex one can associate with any (non)-

Lagrangian gauge system. We also explain how the classical observables are described as

BRST cohomology of this complex. In section 3, this BRST complex is used to construct the

probability amplitude on the configuration space of fields. We also show that the equation

defining this amplitude is reduced to the standard Schwinger-Dyson equation whenever the

theory is Lagrangian. Section 4 gives the path integral representation for the probability

amplitude and the quantum averages of physical observables. In section 5 we compare

the proposed quantization scheme for (non)-Lagrangian gauge theories with the standard

BV-quantization based on Lagrangian formalism. In the Lagrangian case, our method

reproduces the BV scheme although some basic properties of quantum theory can have a

more general form whenever no action principle is admissible for the classical dynamics.

In particular, in the general non-Lagrangian case, the classical BRST differential can be a

non-inner derivation of the antibracket and the probability amplitude is not necessarily an

exponential of the master action.

2. Equations of motion as phase-space constraints

Consider a collection of fields φ = {φi} subject to (differential) equations of motion

Ta(φ) = 0 (2.1)

and an admissible set of boundary conditions. For the sake of simplicity, assume that the

fields φ are bosons; fermion fields and equations of motion can be easy incorporated into

the formalism by inserting appropriate sign factors in the subsequent formulas.

It is convenient to think of φ as a coordinate system on an (infinite-dimensional)

manifold M of all field configurations with prescribed boundary conditions; upon this

interpretation one can regard T = {Ta(φ)} as a section of some vector bundle E → M over

the base M. The set φ0 = {φi
0} ⊂ M of all solutions to eqs. (2.1) coincides then with the

zero locus of the section T ∈ Γ(E). Under the standard regularity conditions [3], {φ0} ⊂ M

is a smooth submanifold associated with an orbit of gauge symmetry transformations (see

eq. (2.4) below); for non-gauge invariant systems this orbit consists of one point.

Now let T ∗M be a cotangent bundle of the space M, with φ̄ = {φ̄i} being the fiber

coordinates. Using the physical terminology, we will refer to φ̄ as the momenta conjugate

to the “position coordinates” φ. The canonical Poisson brackets on T ∗M read

{φi, φj} = 0 , {φi, φ̄j} = δi
j , {φ̄i, φ̄j} = 0 . (2.2)

We can regard the original equations of motion (2.1) as holonomic constraints on the

phase space T ∗M. From this viewpoint, the linearly dependent equations of motion

correspond to reducible Hamiltonian constraints with Nöther’s identity generators Z =

{Za
A(φ)} playing the role of null-vectors for the constraints,

Za
ATa = 0 . (2.3)
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It may also happen that eqs. (2.1) are gauge invariant (i.e., they do not specify a unique

solution), in which case there exists a set of nontrivial gauge symmetry generators R =

{Ri
α} such that

Ri
α∂iTa = U b

αaTb , (2.4)

for some structure functions U b
αa(φ). Then we can enlarge the set of holonomic constraints

Ta = 0 by the constraints

Rα = Ri
α(φ)φ̄i (2.5)

that are linear in momenta.

Assume that the Nöther identity generators and the gauge symmetry generators are

complete and irreducible in the usual sense [3]. Then, in consequence of (2.4) and com-

pleteness of the generators R, the combined set of constraints ΘI = (Ta, Rα) is first class:

{ΘI ,ΘJ} = UK
IJΘK ⇔

{Ta, Tb} = 0 ,

{Rα, Ta} = U b
αaTb ,

{Rα, Rβ} = W
γ
αβRγ + TaE

ai
αβφ̄i ,

(2.6)

W
γ
αβ(φ), Eai

αβ(φ) being some structure functions. In view of (2.3) the constraints Θ are

reducible

ΞI
AΘI = 0 , ΞI

A = (Za
A, 0) . (2.7)

According to the terminology of [1], rels. (2.3), (2.4) define a gauge theory of type (1,1).

Notice that the generators of gauge symmetry R and generators of Nöther’s identities Z

can be completely independent from each other in the case of non-Lagrangian theory [1].

In particular, it is possible to have gauge invariant but linearly independent equations of

motion, and conversely, a theory may have linearly dependent equations without gauge in-

variance. In these cases we speak about gauge theories of type (1,0) and (0,1), respectively.

The theories of type (0,0) are those for which eqs. (2.1) are independent and have a unique

solution. The general (n,m)-type gauge theory with n > 1 and/or m > 1 corresponds to

the case of (n − 1)-times reducible generators of gauge transformations and (m − 1)-times

reducible generators of the Nöther identities (see [1] for the precise definition).

It is easy to see that the “number” of independent first class constraints among the

Θ’s coincides with the “number” of fields φ. The same can be said in a more formal way:

the coisotropic surface L ⊂ T ∗M defined by the first-class constraints (2.6) is a Lagrangian

submanifold. Consider the action of the Hamiltonian system with constraints Θ:

S[λ, φ, φ̄] =

∫ t2

t1

dt(φ̄iφ̇
i − λIΘI(φ, φ̄)) . (2.8)

This action corresponds to a purely topological field theory having no physical evolution

w.r.t. to the time 2 t. The model is invariant under the standard gauge transformations

2Notice, that the “time” t in (2.8) is an auxiliary (d+1)-st dimension, which is not related anyhow with

the evolution parameter in the (differential) equations of motion (2.1) . The true physical time is among

the d original dimensions.

– 6 –
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generated by the first class constraints (2.6) and their null-vectors (2.7):

δεφ
i = {φi,ΘI}ε

I , δεφ̄i = {φ̄i,ΘI}ε
I ,

δελ
I = ε̇I − λKU I

KJεJ + ΞI
AεA .

(2.9)

Here εI = (εa, εα) and εA are infinitesimal gauge parameters, and the structure functions

U I
KJ(φ) are defined by (2.6).

Imposing the boundary conditions on the momenta

φ̄i(t1) = φ̄i(t2) = 0 , (2.10)

one can see that dynamics of the model (2.8) is equivalent to that described by the orig-

inal equations (2.1). Indeed, let γ(t) = (φ(t), φ̄(t), λ(t)) be a trajectory minimizing the

action (2.8). Due to the equations of motion

∂S

∂λI
= 0 , (2.11)

the phase-space projection (φ(t), φ̄(t)) of γ(t) lies on the constraint surface L. Given a time

moment t0 ∈ (t1, t2), one can always find an appropriate gauge transformation (2.9) moving

the point (φ(t0), φ̄(t0)) ∈ L to any other point of the constraint surface and simultaneously

assigning any given value to λ(t0), no matter how the boundary points γ(t1), γ(t2) were

fixed. So, there are no true physical dynamics in the bulk (t1, t2) and the only nontrivial

equations to solve are the constraints (2.11) on the boundary values of fields (φ(t), φ̄(t)) at

t1 and t2. But the boundary condition (2.10) reduces eqs. (2.11) to the original equations

of motion Ta(φ(t1)) = Ta(φ(t2)) = 0. Thus, we have two copies of the original dynamics

corresponding to the end points of the “time” interval [t1, t2].

It is easy to see that the quantization of the topological model (2.8) induces a trivial

quantization of the original theory [1]: the quantum averages of physical observables co-

incide exactly with their classical values, i.e., no quantum corrections arise. In a theory

without gauge symmetries and identities, this is clearly seen from rels. (1.12)-(1.14). To

get a nontrivial quantization, one has to modify the model (2.8) keeping intact its classical

dynamics. For this end we consider a formal deformation of the constraints (2.6) and their

null-vectors (2.7) by higher powers of momenta,

Θ̃I = (T̃a, R̃α) ,

T̃a = Ta(φ) + V i
a(φ)φ̄i + O(φ̄2) ,

R̃α = Ri
α(φ)φ̄i + O(φ̄2) ,

Z̃a
A = Za

A(φ) + O(φ̄) .

(2.12)

In order for the new constraints Θ̃I to define a topological model - a theory without

physical degrees of freedom in the bulk of the time interval - they must be first class and

have Ξ̃I
A = (Z̃a

A, 0) as null-vectors. These requirements result in an infinite set of relations

on the expansion coefficients in (2.12). In particular, at the zeroth order in φ̄’s we get

V i
a∂iTb − V i

b ∂iTa = Cc
abTc , (2.13)

– 7 –
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cf. (1.15-1.17). The condition (2.13) is necessary and sufficient for the existence of higher

order deformations respecting the algebraic structure of constraints [1]. The functions

(V i
a , Cc

ab) are said to define a Lagrange structure compatible with the equations of mo-

tion (1.1); the set V = {V i
a}, determining the first order deformation, is called the La-

grange anchor. Clearly, the condition (2.13) does not specify a unique Lagrange structure.

As was shown in [1] any two Lagrange structures are related to each other by the following

transformation:

V i
a → V i

a +TbG
bi
a +Gα

aRi
α+∂jTaG

ij , Cc
ab → Cc

ab−Gci
[a∂iTb]−Gα

[aU
c
αb]+GA

abZ
c
A , (2.14)

where GA
ab, Gbi

a , Gα
a , Gij = Gji are arbitrary functions and the square brackets mean

antisymmetrization in indices a, b. In particular, one can use these transformations to

generate a nontrivial Lagrange structure from the trivial one V = C = 0.

Now consider the Hamiltonian action (2.8) with the constraints Θ̃ in place of Θ. We

claim that this replacement does not affect the classical dynamics. Indeed, repeating

the arguments above, we conclude that the classical dynamics are still localized at the

boundary; but condition (2.10) reduces (2.11) to the original equations of motion (2.1) for

any formal deformation (2.12). The classical equivalence, however, is not followed by the

quantum one, and as we will see in the next section, it is the nontrivial Lagrange anchor

V that defines possible “directions” of nontrivial quantum fluctuations near the classical

solution.

The BRST-BFV quantization of the Hamiltonian constrained system implies the exten-

sion of the original phase space T ∗M by ghost variables [7, 3]. To each first class constraint

Θ̃I = (T̃a, R̃α) we assign the ghost field CI = (η̄a, cα) and the conjugate ghost momentum

P̄I = (ηa, c̄α). Since the constraints Θ̃ are supposed to be reducible, we also introduce the

canonically conjugate pairs of ghosts-of-ghosts (ξ̄A, ξA). The canonical Poisson structure

on the ghost extended phase-space is defined as follows:

{CI , P̄J} = −δI
J , {ξB , ξ̄A} = −δA

B . (2.15)

The Poisson brackets vanish among other variables with the exception of ones in the original

phase space T ∗M, which are left unchanged3. The Grassman parity and the ghost number

assignments of the new fields are given by

ε(CI) = ε(P̄I) = 1 , ε(ξ̄A) = ε(ξA) = 0 ,

gh(CI) = −gh(P̄I) = 1 , gh(ξ̄A) = −gh(ξA) = 2 .
(2.16)

Upon the complex conjugation the phase-space variables behave as

φ∗ = φ , φ̄∗ = φ̄ , C∗ = C , P̄∗ = −P̄ , ξ∗ = −ξ , ξ̄∗ = −ξ̄ . (2.17)

3Geometrically, one can regard the ghost variables as linear coordinates in the fibers of a Z×Z2-graded

vector bundle E over the configuration space M. Upon this interpretation the canonical Poisson brackets

on the extended phase space - the total space of E - are modified by terms involving a linear connection on

E (see [11, 12, 1], for more detailed discussion). Here, however, we consider only the simplest case where

E → M is a trivial vector bundle with flat connection.
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The gauge structure of the topological model is completely encoded by the BRST

charge

Ω = CIΘ̃I + ξ̄AΞ̃I
AP̄I + · · · . (2.18)

By definition,

Ω∗ = Ω , gh(Ω) = 1 , ε(Ω) = 1 , (2.19)

and the higher orders of ghost variables in (2.18) are determined from the master equation

{Ω,Ω} = 0 . (2.20)

Denote by F the Poisson algebra of functions on the ghost-extended phase space. The

generic element of F is given by formal power series in C, P̄ , ξ, ξ̄ and φ̄ with coefficients being

smooth (in any suitable sense) functions of φ. The adjoint action of Ω makes F a cochain

complex: A function F is said to be BRST-closed (or BRST-invariant) if {Ω, F} = 0,

and a function B is said to be BRST-exact (or trivial) if B = {Ω, C}, for some C. The

corresponding cohomology group H =
⊕

k∈Z
Hk is naturally graded by the ghost number.

As usual, the physical observables are nontrivial BRST invariants with ghost num-

ber zero. It can be shown [1] that the cohomology class of any BRST-invariant function

F = F (φ, φ̄, C, P̄ , ξ, ξ̄) is completely determined by the projection of F on M, i.e., by the

function F̄ (φ) = F (φ, 0, 0, 0, 0, 0), and a function O(φ) is the projection of some physical

observable iff

Ri
α∂iO = F b

αTb (2.21)

for some F b
α(φ). Thus, to any on-shell gauge-invariant function O on M one can associate

a BRST-invariant function on the extended phase space and vice versa. Let [F ] denote the

BRST-cohomology class of a physical observable F , then the map

[F ] 7→ 〈F 〉0 ≡ F̄ (φ0) ∈ R , (2.22)

with φ0 being a unique solution to eqs. (2.1), establishes the isomorphism H0 ' R. By

definition, 〈F 〉0 is the classical (expectation) value of the physical observable F .

One can also use the BRST language to give another proof of the classical equivalence

of the topological theories associated with the constraints Θ and Θ̃ involving trivial and

nontrivial Lagrange anchors, respectively. Let Ω1 denote the BRST charge constructed by

the former set of constraints. Then the BRST charge (2.18) is proved to be canonically

equivalent to Ω1. Namely, there exists a function G ∈ F of ghost number zero such that

Ω = e{G, · }Ω1 =

∞∑

k=0

1

k!
{G, {G, . . . {G,Ω1} . . .} . (2.23)

The canonical equivalence of these two BRST charges implies the isomorphism between cor-

responding cohomology groups, and hence the physical equivalence of the classical theories

defined by Ω and Ω1. In terms of the original constrained dynamics on T ∗M, rel. (2.23)

implies the absence of nontrivial deformations for the regular constraint systems Θ. In

other words, any deformation (2.12) is obtained by a trivial superposition of a canonical
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transform of T ∗M and a linear combining of the initial constraints, ΘI → GJ
I ΘJ , with

some nondegenerate matrix GJ
I (φ, φ̄).

Example 1. Let S(φ) be a nonsingular action functional, so that the corresponding Van-

Vleck’s matrix Sij ≡ ∂i∂jS is invertible in a sufficiently small vicinity of a classical solution

φ0. The BRST charges corresponding to the zero and the canonical anchors read

Ω1 = η̄i∂iS , Ω = η̄i(∂iS − φ̄i) . (2.24)

Let us show that the two BRST charges (2.24) are related to each other by the canonical

transform (2.23) with G being a function of φ and φ̄. To this end, we first split the phase-

space variables onto the “position coordinates” ϕI = (φi, ηi) and their conjugate momenta

ϕ̄J = (φ̄j , η̄
j), and introduce an auxiliary N-grading counting the total number of momenta

entering monomials in ϕ̄’s (the m-degree in the terminology of ref. [1]). By definition,

F =
⊕

k∈N
Fk, where Fk consists of homogeneous functions of m-degree k:

Fk 3 F ⇔ NF = kF , N = ϕ̄I
∂

∂ϕ̄I
. (2.25)

Now we can prove the statement above by induction on the m-degree. Observe that

Ω(3) ≡ e{G2, · }Ω1 = Ω + O(ϕ̄3) , G2 =
1

2
Sijφ̄iφ̄j , (2.26)

Sij being the matrix inverse to Sij . In other words, the function Ω(3) is canonically equiv-

alent to Ω modulo ϕ̄3. Suppose Ω(k) is canonically equivalent to Ω modulo k, i.e.,

Ω(k) = Ω + Ωk + O(ϕ̄k+1) , Ωk ∈ Fk . (2.27)

It then follows from the master equation {Ω(k),Ω(k)} = 0 that

δΩk ≡ {Ω1,Ωk} = 0 , (2.28)

where we have introduced the nilpotent differential δ : Fk → Fk preserving m-degree.

Explicitly,

δ = −∂iS
∂

∂ηi
+ η̄iSij

∂

∂φ̄j

, δ2 = 0 . (2.29)

Notice that the δ-cohomology is nested in F0, as we have the following contracting homo-

topy for N with respect to δ:

δ∗ = φ̄iS
ij ∂

∂η̄j
, δδ∗ + δ∗δ = N . (2.30)

Then for any k > 0 we have

Ωk = δGk , Gk ≡
1

k
δ∗Ωk , (2.31)

and hence

Ω(k+1) ≡ e{Gk , · }Ω(k) = Ω + O(ϕ̄k+1) . (2.32)
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Now we define the desired G through the limit

e{G, · } = lim
k→∞

e{Gk , · } ◦ · · · ◦ e{G3, · } ◦ e{G2, · } . (2.33)

By construction, e{G, · }Ω1 = Ω. We leave it to the reader to check that the generator

G =
1

2
Sijφ̄iφ̄j −

1

12
Skl∂lS

ijφ̄iφ̄j φ̄k + O(φ̄4) , (2.34)

being defined by (2.26), (2.31) and (2.33), does not actually depend on η’s and η̄’s. It may

be shown that the on-shell value of G, i.e., the function Wtree(φ̄) ≡ G(φ0, φ̄), coincides with

the generating function of connected Green’s functions in tree approximation.

3. Probability amplitudes and a generalized Schwinger-Dyson equation

In the previous section, a general gauge theory, whose equations of motion (2.1) are not

necessarily Lagrangian, has been equivalently reformulated as a constrained Hamiltonian

system in the phase space of fields and sources. Also the classical BFV-BRST formalism

has been constructed for this effective constrained system that contains all the data con-

cerning the original equations of motion (2.1), their gauge symmetries (2.4), and Nöther

identities (2.3). The physical observables of this effective constrained system have been

shown to be in one-to-one correspondence with the on-shell gauge invariants of the original

non-Lagrangian theory. Now we are going to perform the operator BFV-BRST quantiza-

tion [7 – 9, 3] of this effective constrained system with a view to studying physical states. By

construction, the physical states of this effective constrained system are the wave functions

on the (ghost-extended) space of all trajectories. Therefore corresponding matrix elements

of physical operators describe quantum averaging over trajectories (histories) in the con-

figuration space of fields. In other words these matrix elements are to be understood as

the transition amplitudes of the original non-Lagrangian theory. In standard Lagrangian

field theory these average values are usually described by Feynman’s path integral (1.11).

Below we demonstrate how the above definition of the transition amplitudes (in terms of

the matrix elements of the BFV-BRST quantized effective constrained dynamics) repro-

duces the standard definition (1.11) in the Lagrangian case. In the non-Lagrangian case,

however, the corresponding probability amplitude Ψ(φ) cannot be brought to Feynman’s

form (1.10) although it still defines a consistent quantum dynamics.

To perform the operator quantization of the extended phase space (2.2), (2.15) in the

Schrödinger representation one should first divide the phase-space variables into “coordi-

nates” and “momenta”. For our purposes it is convenient to choose them as

ϕI = (φi, ηa, ξA, cα) , ϕ̄J = (φ̄i, η̄
a, ξ̄A, c̄α) (3.1)

By construction, the expansion of the classical BRST charge (2.18) in powers of momenta

contains no zeroth-order term:

Ω =
∞∑

k=1

Ωk , Ωk = ΩI1···Ik(ϕ)ϕ̄I1 · · · ϕ̄Ik
. (3.2)
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On substituting this expansion into the classical master equation (2.20) we get a chain of

equations

{Ω1,Ω1} = 0 , {Ω1,Ω2} = 0 , {Ω2,Ω2} = −2{Ω1,Ω3} , etc . (3.3)

As is seen, the term linear in momenta, Ω1, is Poisson-nilpotent by itself. In fact, Ω1 is

nothing but the “bare” BRST charge associated to the initial constraints (2.6). According

to (2.23), it is canonically equivalent to the total BRST charge (3.2). Thus the leading

term of the BRST charge (3.2) carries all the information about the classical gauge sys-

tem (2.1), (2.3), (2.4), with no reference to the Lagrange structure. The Lagrange anchor V

enters Ω2, the term quadratic in momenta. The second equation in (3.3), being expanded

in ghost variables, reproduces the defining relation for the Lagrange structure (2.13). No-

tice that the sum Ω1 +Ω2 includes all the ingredients of the Lagrange structure; the higher

order terms in (3.2) are added to get a Poisson-nilpotent function on the extended phase

space. It follows form rels. (3.3) that Ω2 defines the so-called weak antibracket among the

momentum-independent functions:

(A,B) ≡ {A, {B,Ω2}} , ∀A(ϕ) , B(ϕ) . (3.4)

In view of the third relation in (3.3) this antibracket satisfies the Jacobi identity up to

the homotopy associated with the classical BRST-differential DA ≡ {A,Ω1} (hence the

name). The second relation in (3.3) implies that D differentiates the antibracket by the

Leibniz rule. When the antibracket is degenerate, the operator D may well be a non-inner

derivation of the anti-Poisson algebra, i.e., D 6= (W , · ) in general. For a more detailed

discussion of the S∞-structure behind this antibracket see [1].

Let us start quantizing this effective constrained system in the Schrödinger represen-

tation, where the space of quantum states is a complex Hilbert space of functions of ϕ’s

w.r.t. the hermitian inner product

〈Ψ1|Ψ2〉 =

∫
DϕΨ∗

1(ϕ)Ψ2(ϕ) . (3.5)

The integration measure Dϕ is given by the direct limit of Lebesgue’s measure upon the

lattice approximation of field configurations. The operators corresponding to the phase-

space variables act on the states by the rule

ϕ̂IΨ = ϕIΨ , ˆ̄ϕIΨ = −i~
∂Ψ

∂ϕI
, (3.6)

where all the derivatives act from the left. By definition,

[ˆ̄ϕI , ˆ̄ϕJ ] = 0 , [ˆ̄ϕI , ϕ̂
J ] = −i~δJ

I , [ϕ̂I , ϕ̂J ] = 0 . (3.7)

The hermiticity properties of the operators ϕ̂ and ˆ̄ϕ follow directly from (2.17), (3.1). The

map

F (ϕ, ϕ̄) =
∞∑

k=0

F I1···Ik(ϕ)ϕ̄I1 · · · ϕ̄Ik
7→ F̂ =

∞∑

k=0

F I1···Ik(ϕ̂)ˆ̄ϕI1
· · · ˆ̄ϕIk

(3.8)
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assigns to any function F ∈ F a unique pseudo-differential operator (the ϕ̂ ˆ̄ϕ-ordering

prescription is applied). Identifying the elements of F with ϕϕ̄-symbols of operators, one

can be free to add to them any terms proportional to positive powers of ~ without any

impact on the corresponding classical limit.

A crucial step in the operator BFV-BRST quantization [7, 3] is to assign a nilpotent

operator Ω̂ to the classical BRST charge (2.18). The ϕϕ̄-symbol of the operator Ω̂ is to

have the form

Ω(ϕ, ϕ̄, ~) =
∞∑

k=0

~
kΩ(k)(ϕ, ϕ̄) , (3.9)

where the leading term Ω(0) is given by the classical BRST charge (2.18), and the higher

orders in ~ are determined by the requirements of hermiticity and nilpotency [9]:

Ω̂† = Ω̂ , Ω̂2 = 0 . (3.10)

It may well happen that no Ω̂ exists satisfying these equations. In that case the classical

theory admits no self-consistent quantization (based on ϕϕ̄-symbols of operators). This is

just the phenomenon usually called the quantum anomaly. In what follows we assume our

theory to be anomaly free so that both equations (3.10) hold true.

Furthermore, we assume that the ϕϕ̄-symbol of the quantum BRST charge (3.9) sat-

isfies condition

Ω(ϕ, 0, ~) = 0 . (3.11)

In the theory we consider, this condition appears to be crucial for existence of nontrivial

BRST-invariant states, i.e., states that are annihilated by the quantum BRST charge,

Ω̂|Ψ〉 = 0. The trivial states are the BRST-invariant states of the form Ω̂|Λ〉. Taking the

quotient of the space of BRST-invariant states by the subspace of trivial ones gives the

BRST-state cohomology.

The full BRST algebra includes, in addition to the nilpotent BRST charge, the ghost-

number operator:

Ĝ =
i

2~

∑

I

gh(ϕI)[ϕ̂
I ˆ̄ϕI + (−1)ε(ϕ

I ) ˆ̄ϕIϕ̂
I ] , Ĝ† = −Ĝ , (3.12)

so that [Ĝ, F̂ ] = gh(F̂ )F̂ for any homogeneous F̂ . In particular,

[Ĝ, Ω̂] = Ω̂ . (3.13)

Under certain assumptions [3] the linear space of states splits as a sum of eigenspaces

of Ĝ with definite real ghost number. The physical states are usually associated with the

equivalence classes of BRST-invariant states at ghost number zero. A consistent consid-

eration of physical states in the Schrödinger representation is known to require further

enlargement of the extended phase space by the so-called nonminimal variables [3]. These

do not actually change the physical content of the theory as one gauges them out by adding

appropriate terms to the original BRST charge. The nonminimal sector just serves to bring
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the physical states to the ghost-number zero subspace where one can endow them with a

well-defined inner product.

The standard nonminimal sector includes the Lagrange multipliers λI = (λa, λ̄α) to

the first class constraints (2.6), anti-ghosts C̄I = (ρ̄a, ρα), ghosts-of-ghosts (σA, υA, βA, γA)

as well as their conjugate momenta πI = (λ̄a, λα), PI = (ρa, ρ̄α), and (σ̄A, ῡA, β̄A, γ̄A). The

ghost number assignments of the new variables are given by

gh(λI) = 0 , gh(C̄I) = −1 , gh(σA) = −1 ,

gh(υA) = 0 , gh(βA) = 1 , gh(γA) = 2 .
(3.14)

The conjugate variables have the same parities but the opposite ghost numbers; since all

the constraints are bosonic, the Grassman parity of any variable equals its ghost number

modulo 2. We also impose the reality conditions

π∗ = π , P̄∗ = P̄ , σ̄∗ = σ̄ , υ∗ = υ , β̄∗ = β̄ , γ∗ = γ , (3.15)

so that the canonically conjugate variables are either real or pure imaginary depending on

their Grassman’s parity.

From now on we will denote the classical BRST charge (2.18) defined in the minimal

sector by Ωmin, while Ω will stand for a total BRST charge. The latter is given by

Ω = Ωmin + πIP
I + β̄AγA + υAσ̄A . (3.16)

Clearly, “putting hats” on the r.h.s. of (3.16) yields a hermitian and nilpotent operator

Ω̂ whenever Ω̂min was so. To promote the Schrödinger representation (3.6) to the fully

extended phase space we place the variables (λa, λα, ρa, ρα, σA, υA, βA, γA) among the co-

ordinates ϕ and consider the other nonminimal variables as momenta belonging to the

set ϕ̄.

The physical states are defined as usual in the BRST theory:

Ω̂|Φ〉 = 0 , Ĝ|Φ〉 = 0 . (3.17)

As the BRST operator Ω̂ corresponds to the first class constraints, being the deformed

equations of motion and gauge symmetry generators, eqs. (3.17) define a probability am-

plitude on the ghost-extended space of trajectories. It is the equation which is to be

understood as Schwinger-Dyson equation for the general (i.e., not necessarily Lagrangian)

gauge theories.

The gauge system at hands being a topological one (in the sense discussed in the

previous section), it might be naively expected to have a 1-dimensional subspace of physical

states spanned by a unique (up to equivalence) “vacuum” state |Φ〉. This would be quite

natural because the probability amplitude has to be a unique function on the space of

trajectories with prescribed boundary conditions. Actually, this is not always the case

in the BRST theory: The physical dynamics may have several copies in the BRST-state

cohomology4, and choosing one of them is equivalent to imposing extra conditions on the

4A particular manifestation of this phenomenon is known as doubling, [3].
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physical states over and above (3.17) (see [13 – 17, 3]). For example, taking |Φ′〉 to be

annihilated by all the momenta,

ˆ̄ϕI |Φ
′〉 = 0 , (3.18)

we get a BRST-invariant state on account of (3.11). The conditions (3.18) also ensure zero

ghost number for |Φ′〉. Thus, |Φ′〉 is a physical state.

A less trivial example of a physical state can be obtained by imposing the following

extra conditions:

η̂a|Φ〉 = ˆ̄cα|Φ〉 = ξ̂A|Φ〉 = ˆ̄λ
α
|Φ〉 = λ̂a|Φ〉 = 0 ,

ρ̂a|Φ〉 = ˆ̄ρ
α
|Φ〉 = γ̂A|Φ〉 = σ̂A|Φ〉 = β̂A|Φ〉 = υ̂A|Φ〉 = 0 ,

(3.19)

Unlike |Φ′〉, the form of the state |Φ〉 essentially depends on a particular structure of

constraints. In the Schrödinger representation (3.6) we have

Φ(ϕ) = δ(η)δ(ξ)δ(λa)δ(ρa)δ(γ)δ(σ)δ(β)δ(υ)Ψ(φ) , Φ′(ϕ) = c ∈ C , (3.20)

where the “matter state” Ψ is annihilated by the quantum constraint operators

Θ̂IΨ = 0 ⇔





(Ta(φ) − i~V i
a (φ)∂i + · · ·)Ψ(φ) = 0 ,

(−i~Ri
α(φ)∂i + · · ·)Ψ(φ) = 0 .

(3.21)

Of course, the φφ̄-symbols of the quantum constraints Θ̂I may differ from ΘI(φ, φ̄) by

~-corrections defined by the quantum master equation (2.20). In the absence of gauge

symmetry eqs. (3.21) reproduce the equation (1.18) for the (complex conjugate of) prob-

ability amplitude of a (non-)Lagrangian field theory we have come to in Introduction on

heuristical grounds. In that case the states |Φ〉 and |Φ′〉 are just dual to each other [3].

Given the wave function Φ∗(ϕ) - the probability amplitude on the extended space of his-

tories - we can calculate the quantum average of any physical observable.

The physical observables are given by the BRST-cohomology classes of hermitian op-

erators at ghost number zero:

Ô† = Ô , [Ω̂, Ô] = 0 , [Ĝ, Ô] = 0 ,

Ô ∼ Ô + [Ω̂, B̂] , gh(B̂) = −1 .
(3.22)

If O(ϕ, ϕ̄, ~) is the ϕϕ̄-symbol of an observable Ô, then O(ϕ, ϕ̄, 0) is a classical observable

in the sense of definition (2.21). As with the BRST charge, not any classical observable

can be generally promoted to the quantum level because of anomalies.

As is known, the inner product (3.5) becomes ill-defined when restricted onto the

physical subspace, and a regularization is needed [16, 3]. The usual receipt of regularizing

inner product of two physical states |Φ1〉 and |Φ2〉 reads

〈Φ1|Φ2〉K = 〈Φ1|e
i
~
[Ω̂,K̂]|Φ2〉 . (3.23)

Here K is an appropriate gauge-fixing fermion of ghost number −1. Formally, the expres-

sion (3.24) does not depend on the choice of K, since we fold the regulator e[Ω̂,K̂] between

the states annihilated by Ω̂. (More precisely, it depends only on the homotopy class of K

in the variety of all admissible gauge-fixing fermions.)
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Now we postulate the number

〈O〉 =
〈Φ|Ô|Φ′〉K
〈Φ|Φ′〉K

(3.24)

to be the quantum average of a physical observable O(φ) associated with the classical

system (2.1) and the Lagrange structure (2.13).

The reader may wonder why we sandwich the physical observable between different

copies of a single physical state, rather than take the diagonal matrix elements 〈Φ|Ô|Φ〉K or

〈Φ′|Ô|Φ′〉K by analogy with the definition of expectation values in conventional quantum

mechanics. The reasons are as follows:

(i) Upon normalization all the aforementioned expressions give the same value for the

quantum average (see Proposition 2 of the next section). In other words, either copy of

the physical state is eligible.

(ii) It should be realized that given a physical observable O, expression (3.24) defines

actually an infinite number of transition amplitudes associated with different initial and

final states of the original gauge theory (2.1) even though it looks like a particular equal-

time matrix element of the effective Hamiltonian theory in d+ 1 dimensions. The different

initial and final states (w.r.t. the true physical time containing among d dimensions) enter

implicitly through the boundary conditions for the field φ in perfect analogy to the usual

Feynman’s transition amplitudes.

(iii) The special convenience of the “asymmetric” definition (3.24) is that it provides

a direct link with the conventional path-integral quantization in the case of Lagrangian

equations of motion (see Example 2 below). The relevance of asymmetric inner products

has been long known [13] for tracing various relationships between the BRST theory and

the Dirac quantization.

Rel. (3.24) has also the following “cohomological” interpretation similar to the defi-

nition of expectation values of classical physical observables (2.22). To any physical ob-

servable Ô we can associate the physical state |O〉 = Ô|Φ′〉. The BRST-state cohomology

being essentially one-dimensional, the state |O〉 has to be proportional to |Φ′〉 up to a

BRST-trivial state5. So, we have

|O〉 ≡ Ô|Φ′〉 = 〈O〉|Φ′〉 + Ω̂|Λ〉 , (3.25)

for some 〈O〉 ∈ C and |Λ〉. Upon passing to the BRST-cohomology, |Φ′〉 becomes an eigen-

state for any physical observable Ô, and taking the inner product of (3.25) with the BRST-

invariant state |Φ〉, we just identify the eigenvalue 〈O〉 with the quantum average (3.24) of

Ô. Using the definition (3.25), we can rewrite (3.24) in the form

〈O〉 =
〈Φ|O〉K
〈Φ|1〉K

= (const)

∫
DϕO(ϕ)Φ∗

K(ϕ) , (3.26)

that enables us to interpret the gauge-fixed probability amplitude Φ∗
K(ϕ) = 〈Φ|ϕ〉K as a

linear functional on the space of physical observables represented by the states O(ϕ) =

〈ϕ|O〉.

5In principle, it may be proportional to any copy of |Φ〉′, say |Φ〉, but a close look at |O〉 rules out this

possibility.
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Example 2. Consider a Lagrangian gauge theory of rank 1, which is described by an

action S(φ) and a set of gauge algebra generators Rα = Ri
α∂i subject to the relations

Ri
α∂iS = 0 , [Rα, Rβ] = W

γ
αβRγ . (3.27)

The total and minimal BRST charges are given respectively by

Ω = Ωmin + λ̄iρ
i + λαρ̄α + β̄αγα + υασ̄α , Ωmin = Ω1 + Ω2 , (3.28)

where

Ω1 = η̄i∂iS + cα(Ri
αφ̄i − ηj∂iR

j
αη̄i) + cα

(
1

2
cβW

γ
βαc̄γ − ξγW

γ
βαξ̄β

)

+
1

2
cαcβ∂iW

γ
βαξγ η̄i − ηiR

i
αξ̄α ,

Ω2 = η̄iφ̄i + c̄αξ̄α (3.29)

are terms linear and quadratic in momenta (cf. (3.2)). In the context of Lagrangian gauge

theories the truncated BRST charge Ω1 was first introduced in [18]. Quantizing the classical

BRST charge (3.28) by the rule (3.8), one gets an odd second-order differential operator

Ω̂ = −i~

(
∂jS(φ) − i~

∂

∂φj

)
∂

∂ηj
− i~cαRj

α(φ)
∂

∂φj
+ · · · (3.30)

acting on the Hilbert space of functions of

ϕI = (φi, ηi, c
α, ξα, λi, λα, ρi, ρα, σα, υα, βα, γα) .

In general, this operator is neither hermitian nor nilpotent:

Ω̂† = Ω̂ − 2i~ĉαÂα , Ω̂2 = ~
2(Âα

ˆ̄ξ
α

+ ∂̂iAˆ̄η
i
) , (3.31)

here the function

A ≡ cαAα = cα(∂iR
i
α + W

β
αβ) (3.32)

represents the so-called modular class of gauge algebra [11, 3]. Taking the hermitian part

of Ω̂, we get a nilpotent BRST operator

Ω̂′ =
1

2
(Ω̂ + Ω̂†) = Ω̂ − i~Â , Ω̂′Ω̂′ = 0 . (3.33)

Occurrence of the second term in Ω̂′ conflicts, however, with (3.11). As the result there

may be no physical states unless the modular class of A is nontrivial. By construction,

{Ω1, A} = 0, while the triviality means a stronger condition A = {Ω1, B} for some B(ϕ).

In the latter case one can pass to an equivalent quantization by twisting the integration

measure and the operator algebra,

D′ϕ = Dϕe2B , ϕ̂′I = e−Bϕ̂IeB = ϕ̂I , ˆ̄ϕ
′
I = e−B ˆ̄ϕIe

B = −i~∂I − i~∂IB , (3.34)

so that the ϕ′ϕ̄′-symbol of the operator (3.33) will satisfy (3.11) modulo ~2. The nontrivial

modular class indicates the presence of a genuine 1-loop anomaly. It should be noted that
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in local field theory the expressions like A are singular and proportional to δ(0), δ′(0), etc.

It is beyond the scope of this paper to go into details of regularizing quantum divergences,

so we restrict our consideration to the case A = 0. Then the solution to the generalized

Schwinger-Dyson equation (3.17) reads

Φ(ϕ) = (const) δ(η)δ(ξ)δ(ρi)δ(λi)δ(γ)δ(β)δ(σ)δ(υ) e−
i
~
S(φ) . (3.35)

Now let O(φ) be a classical observable of the original gauge theory (3.27), then

Ri
α∂iO = F i

α∂iS . (3.36)

The wave function corresponding to the state |O〉 = Ô|Φ′〉 has the form

O(ϕ) = O(φ) + cαF i
α(φ)ηi +

1

2
cβcαK

γ
αβ(φ)ξγ + · · · , (3.37)

where dots stand for higher powers of η’s and ξ’s. Verifying the BRST-invariance of |O〉,

we find

Ω̂O = ~
2Λ , Λ = cα(∂iF

i
α − K

β
αβ) + · · · . (3.38)

By definition, Λ is a BRST-closed state with ghost number 1. Moreover, it is separately

annihilated by the Ω̂1- and Ω̂2-parts of the total BRST charge (3.28). If Λ is Ω̂1-exact,

i.e., ~Λ = Ω̂1O
(1), we can cancel the r.h.s. of (3.38) out by redefinition O′ = O − ~O(1), so

that the new state O′ will be BRST-invariant up to ~2; otherwise no quantum observable

corresponds to the classical observable O. Repeating this procedure time and again we can

move the anomaly at higher orders in ~ until we are faced with a nontrivial Ω̂1-cocycle at

ghost number 1. In that case the procedure stops and we get an unavoidable (or genuine)

quantum anomaly. Here we simply assume that Λ = 0.

To regularize the inner product in the physical subspace spanned by the state (3.35)

and Φ′ = 1 let us take the gauge-fixing fermion

K =
i

~
ραχα , (3.39)

where the functions χα(φ) are chosen in such a way that the matrix Ri
α∂iχ

β is nondegen-

erate. Then we have

[Ω̂, K̂] = cαRi
α∂iχ

βρβ + λβχβ − i~∂jχ
βρβ

∂

∂ηj
. (3.40)

The gauge-fixed probability amplitude is given by

Φ∗
K(ϕ) = e−

i
~
[Ω̂,K̂]Φ∗ = δ(ηi − ∂iχ

βρβ)δ(ξ)δ(λa)δ(γ)δ(β)δ(σ)δ(υ)e
i
~
(S−cαRi

α∂iχ
βρβ−λβχβ)

(3.41)

Inserting (3.37) and (3.41) into the general expression (3.26) and integrating over arguments

of δ-functions, we finally arrive at the Faddeev-Popov path-integral

〈O〉 = (const)

∫
DφDcDρDλ Ō exp

i

~
(S − cαRi

α∂iχ
βρβ − λαχα) , (3.42)

where

Ō(φ, c, ρ) ≡ O(φ, η, c, ξ)|ξ=0, ηi=∂iχβρβ
= O(φ) + cαF (φ)iα∂iχ

βρβ + · · · , (3.43)

and the normalization factor (const) is fixed by the condition 〈1〉 = 1.
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4. Path-integral representation for the probability amplitudes

We have seen that the general solution to the generalized Schwinger-Dyson equation (3.17)

and auxiliary conditions (3.19) is given by the product of δ-functions of ghosts and La-

grange multipliers and the matter state Ψ(φ) defined by the constraint equations (3.21).

The function Ψ∗(φ) is then identified with the probability amplitude on the original config-

uration space M of fields with given boundary conditions. The gauge invariant equations

of motion give rise to the gauge invariant probability amplitude Ψ∗(φ), much as a gauge

invariant action functional S(φ) leads to the gauge invariant Feynman’s amplitude e
i
~
S in

the Lagrangian field theory. In both the cases an appropriate gauge-fixing procedure is

required to compute the quantum averages of physical observables. The crucial difference,

however, is that in the conventional BV quantization the probability amplitude is known

from the outset, whereas in non-Lagrangian theory this amplitude is yet to be found from

the constraint equation (3.21), which is hard to solve in general. A perturbation solu-

tion can be obtained by making use of a suitable path-integral representation that we are

proceeding to derive.

Let us start with the following two propositions.

Proposition 1. Let |φ〉 be a family of physical states defined by the conditions

Γ̂|φ〉 = 0 , φ̂i|φ〉 = φi|φ〉 ,

Γ = (CI , ξ̄A, πI , C̄I , σ̄
A, ῡA, β̄A, γ̄A) ,

(4.1)

and Ψ(φ) be a solution of the constraint equation (3.21), then

Ψ(φ1)Ψ
∗(φ0) = 〈φ1|φ0〉K , (4.2)

for some admissible gauge-fixing fermion K.

The proof can be found in [17]. Notice that the states |φ〉 are physically equivalent to

each other and have well-defined inner product with the probability amplitude (3.20), (3.21)

on the extended configuration space,

〈φ|Φ〉 = Ψ(φ) . (4.3)

The last property characterizes the state |φ〉 as dual to |Φ〉.

Proposition 2. The quantum average (3.24) of a physical observable O can be written as

〈O〉 =
〈Φ′|Ô|Φ′〉K
〈Φ′|Φ′〉K

, (4.4)

where |Φ′〉 is the physical state (3.18) annihilated by all the momenta ˆ̄ϕ’s and K is an

admissible gauge-fixing fermion.

Notice that unlike (3.24) the alternative definition (4.4) involves a single state |Φ′〉

whose form is known and does not depend on a particular structure of constraints.
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Sketch of the proof. The proof is based on abelianization arguments. Locally, one can

always find a canonical transformation (2.23) bringing the total BRST charge Ω into the

form

Ω1 = ΩI(ϕ)ϕ̄I = η̄aTa + ξ̄AZa
Aηa + cαRi

αφ̄i + λ̄aρ
a + λαρ̄α + β̄AγA + υAσ̄A , (4.5)

where the constraints T ’s and R’s are in abelian involution,

Ri
α∂iTa = 0 , [Rα, Rβ] = 0 , (4.6)

and Ri
α∂iZ

a
A = 0. This canonical transform is then lifted to a unitary operator Û such that

Ω̂1 = Û Ω̂Û † and Û |Φ′〉 = |Φ′〉. (See [8, 9] for the proof of quantum abelization theorem).

Of course, the structure functions T ’s, Z’s and R’s (entering (4.5)) may differ from the

original ones by quantum corrections that can be obtained from (3.10).

For abelian constraints we can take O to be strongly annihilated by the gauge symmetry

generators,

Ri
α∂iO = 0 . (4.7)

The function O(φ) is thus BRST-invariant and does not depend on the ghost variables and

Lagrange multipliers. Now consider the following gauge-fixing fermion:

K =
i

~
[ηaλ

a + ραχα + ξAβA + γ̄ANA
a η̄a + λaNA

a σA] , det(Za
BNA

a ) 6= 0 . (4.8)

We have [Ω̂1, K̂] = i~ ̂{Ω1,K}, where

i~{Ω1,K} = (λaTa + ρaηa) + (λαχα + cαRi
α∂iχ

βρβ) + (ρaNA
a σA + λaNA

a υA)

+(ηaZ
a
AβA + ξAγA) + (γ̄ANA

a Za
B ξ̄B + β̄ANA

a η̄a) .
(4.9)

The last sum contains noncommuting terms that somewhat complicates calculations. None-

theless, after some algebra one can find an explicit expression for the state e
i
~
[Ω̂,K̂]|Φ′〉. (We

refer the reader to [16], where similar operatorial expressions were thoroughly studied as

well as more general gauges.) For example, choosing the matrix NA
a in such a way that

NA
a Za

B = δA
B , we find

e
i
~
[Ω̂,K̂]Φ′(ϕ) = e

i
~
[(λaTa+ρaηa)+(λαχα+cαRi

α∂iχ
βρβ)+(ρaNA

a σA+λaNA
a υA)+c(ηaZa

A
βA+ξAγA)]

(4.10)

for some nonzero constant c ∈ R. Substituting (4.10) into (4.4) and integrating w.r.t. λa,

λα, ξA, γA, cα, ρα, and βA, we get

〈Φ′| ∧Oe
i
~
[Ω̂,K̂]|Φ′〉 = (const)

∫
DφDηDυDσO(φ)δ(Ta + NA

a υA)

×δ(Za
Aηa)δ(ηa + NA

a σA)δ(χ) det(Ri
α∂iχ

β) . (4.11)

Further integration of υ, σ, and η yields

〈O〉 = (const)

∫
DφO(φ)Ψ(φ)µ(φ) , (4.12)
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where

Ψ = δ(Tā(φ))µ0(φ) , µ0 = det(δa
ā , Za

A) , µ = δ(χ) det(Ri
α∂iχ

β) , (4.13)

{Tā} ⊂ {Ta} being a complete subset of independent constraints. The overall constant

in (4.12) is determined by the normalization condition 〈1〉 = 1.

Clearly, the distribution Ψ is nothing but the classical probability amplitude annihi-

lated by the operators of abelian constraints (4.6). Substituting this Ψ into (3.20) gives

a solution to the generalized Schwinger-Dyson equation (3.17) with Ω̂1 in place of Ω̂. Ex-

plicitly,

Φ(ϕ) = δ(η)δ(ξ)δ(λa)δ(ρa)δ(γ)δ(σ)δ(β)δ(υ)µ0 (φ)δ(Tā) . (4.14)

The proof is completed by showing that the same expression (4.12) for the quantum average

is obtained if one starts with the definition (3.24), where Ω and Φ are given respectively

by (4.5) and (4.14), and chooses

K =
i

~
χβρβ (4.15)

as gauge-fixing fermion. The details are left to the reader. ¤

Regarding now the regulator e
i
~
[Ω̂,K̂], which is involved in the definition of inner prod-

ucts (3.23), as the evolution operator associated to the BRST-trivial Hamiltonian [Ω̂, K̂],

one can immediately get the path-integral representations for expressions (4.2) and (4.4).

For the probability amplitude we have

Ψ(φ1)Ψ
∗(φ0) =

∫
DϕDϕ̄ exp

i

~

∫ 1

0
dt(ϕ̄I ϕ̇

I − {Ω,K}) , (4.16)

where, in accordance with (4.1), integration extends over all the paths obeying

Γ(0) = Γ(1) = 0 , φi(0) = φi
0 , φi(1) = φi

1 . (4.17)

The other variables are unrestricted at the endpoints. Integrating the function (4.16) w.r.t.

φ0 with an appropriate weight we get a desired solution of the constraint equations (3.21)

as function of φ1.

Similarly, the path integral

〈O〉 =

∫
DϕDϕ̄O(ϕ(1)) exp

i

~

∫ 1

0
dt(ϕ̄I ϕ̇

I − {Ω,K}) (4.18)

with the boundary conditions

ϕ̄I(0) = ϕ̄I(1) = 0 (4.19)

gives the quantum average of a physical observable O. Here the value

O(ϕ) = O(φ) + (ghost terms) (4.20)

is the ϕ̄-independent part of a BRST-invariant extension of O(φ). It is determined by the

equation

{Ω1, O} = 0 , (4.21)

where Ω1 is the leading term of expansion (3.2). In ref. [1] this path-integral representation

for quantum averages was derived within a superfield approach to the BV-quantization of

topological sigma-models.
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5. Comparison with the field-antifield formalism

To gain further insight into the quantization of (non-)Lagrangian gauge theories described

in the previous sections, it is instructive to compare our method with the standard field-

anti-field formalism well-known for Lagrangian theories [2, 3]. We begin with a brief

outline of the usual BV-formalism in the form which is suitable for comparing with its

non-Lagrangian counterpart.

In the BV-formalism one starts with a configuration space N of fields φA endowed

with an integration measure Dφ. The set φA includes both physical and ghost fields. The

odd cotangent bundle ΠT ∗N , with φ∗
A being fiber coordinates, is known as the field-anti-

field supermanifold. Besides the Grassman parity, all the fields φA and anti-fields φ∗
A carry

definite ghost numbers such that gh(φ∗
A) = −gh(φA) − 1. For simplicity sake, we assume

that N is a super-domain with Dφ being the canonical translation-invariant measure. The

canonical measure on N induces the canonical measure DφDφ∗ on the odd cotangent

bundle ΠT ∗N . Using these data, one can define the so-called odd Laplace operator6

∆ = (−1)εA
∂2

l

∂φA∂φ∗
A

, ∆2 ≡ 0 . (5.1)

By definition, the operator ∆ is nilpotent and has ghost number 1.

Let W (φ, φ∗) be an arbitrary even function of ghost number zero. Define the twisted

Laplace operator by the rule

Ω̂ = e−
i
~
W (−~

2∆) e
i
~
W = Ω̂0 + Ω̂1 + Ω̂2 , Ω̂2 ≡ 0 . (5.2)

Here

Ω̂0 = −i~∆W +
1

2
(W,W ) , Ω̂1 = −i~(W, · ) , Ω̂2 = −~

2∆ , (5.3)

and (·, ·) stands for the antibracket of two functions,

(−1)ε(A)(A,B) ≡ ∆(AB) − (∆A)B − (−1)ε(A)A∆B . (5.4)

Like ∆, the operator Ω̂ is odd, nilpotent, and has ghost number 1. The difference between

−~2∆ and Ω̂ is in the first- and zeroth-order differential operators Ω̂1 and Ω̂0 constructed

from W , see (5.3).

The operator Ω̂ is said to be the quantum BRST operator associated to the quantum

master action W if

Ω0 = 0 . (5.5)

This condition is known as the quantum master equation. In the BV theory one is usually

interested in proper solutions to the quantum master equation. These are specified by two

additional requirements: (i) W is analytical in ~, i.e., W = W0 + ~W1 + ~2W2 + · · ·, and

(ii) the rank of the Hesse matrix d2W0 equals dimN at any point of the stationary surface

dW0 = 0. In particular, the latter condition excludes the trivial solution W = 0 whenever

dimN 6= 0.

6The BV method can also be formulated with a more general integration measure, see e.g. [19].
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Thus, to define a gauge dynamics on ΠT ∗N means to specify a proper solution to

eq. (5.5). The quantum BRST operator in the BV theory can be understood as a twist (5.3)

of the odd Laplacian with W being the master action.

Given a quantum BRST operator, the physical observables are identified with zero

ghost-number functions O(φ, φ∗) obeying condition

Ω̂O = 0 ⇔ ∆(Oe
i
~
W ) = 0 . (5.6)

In view of (5.5) the unit 1 ∈ R is automatically a physical observable. Of a particular

interest is the following family of solutions to eq. (5.6):

ΦK = δ(φ∗
A − ∂AK)e−

i
~
W , Ω̂ΦK = 0 , (5.7)

K(φ) being an arbitrary odd function on N with ghost number -1. The function Φ∗
K is

nothing but the gauge-fixed probability amplitude on the field-antifield configuration space

ΠT ∗N . The quantum average of a physical observables O is defined now as

〈O〉 =

∫
DφDφ∗OΦ∗

K =

∫
DφDφ∗δ(φ∗

A − ∂AK)e
i
~
W

=

∫
DφO(φ, ∂K) exp

i

~
W (φ, ∂K) .

(5.8)

Because of (5.6) this integral does not actually depend on K (by Stokes theorem).

Notice that the BRST operator Ω̂ is hermitian w.r.t. the canonical integration measure

providing the antifields φ∗
A are chosen to be pure imaginary. Using this fact and the

definition (5.7) of the probability amplitude, one can easily deduce the Word identity

〈O + Ω̂Λ〉 = 〈O〉 ⇔ 〈Ω̂Λ〉 = 0 , ∀Λ . (5.9)

In other words, the quantum average of a physical observable O depends on the Ω̂-

cohomology class [O] rather than a particular representative of this class.

The identification of rels. (5.2 -5.8) with analogous constructions of section 3 is now

straightforward. The quantum BRST operator (5.2) is just a particular example of the gen-

eral BRST charge defined by rels. (3.2, 3.9), (3.10) where Ω̂k = 0, ∀k > 2, and the matrix

ΩIJ determining Ω̂2 is constant and nondegenerate. The quantum master equation (5.5)

corresponds to condition (3.11), the flatness condition in the terminology of ref. [1]. The

physical values (5.6) are naturally identified with the BRST-invariant states (3.25). In

particular, the value (5.7) - the complex conjugate to the gauge-fixed probability ampli-

tude - coincides in form with a particular solution to the generalized Schwinger-Dyson

equation (3.20), (3.41). Finally, the following relation set up a correspondence between

minimal sectors of fields in a pure Lagrangian case7:

φA = (φi, cα) , φ∗
A = (ηi, ξα) (5.10)

7As regards the non-minimal variables, one can introduce them in many different, but equivalent,

ways [3].
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(see Example 2 of section 3). With all these identifications, one can regard the BV path

integral (5.8) as the quantum-mechanical matrix element (3.26), with the inner product

being the ordinary L2-norm w.r.t. the canonical integration measure on ΠT ∗N .

As we have seen, the BV quantization scheme is a particular case of the proposed

method that works also in the theories which are not Lagrangian. Now let us comment on

the main properties of our method which may have a more general form in non-Lagrangian

case in comparison with the Lagrangian BV scheme.

(i) In distinction from the canonical BRST operator (5.2), the general BRST charge

(3.2) can involve differential operators of order k > 2 that gives rise to the higher antibrack-

ets (see [20, 21], and references therein).

(ii) Even if all the higher antibrackets vanish (i.e., Ω̂k = 0, ∀k > 2), the quantum BRST

operators (5.2), (3.2) are not equivalent in general. This is because the antibracket (3.4)

associated with the quadratic term in expansion (3.2) is allowed to be degenerate or even ir-

regular as distinct from the canonical antibracket (5.4). This fact has further consequences:

(iii) In the BV quantization, the first-order operator Ω̂1 = (W, · ) is, by definition, an

inner derivation of the canonical antibracket. For a degenerate antibracket (3.4) this is not

always the case: the antibracket is still differentiated by the classical BRST differential

Ω̂1, but this may well be a non-inner derivation. In that case no quantum master action

W can be found to twist the first order term Ω̂1 out from the quantum BRST operator

Ω̂ = Ω̂1 + Ω̂2 by analogy with (5.2). This also means that the quantum BRST operator is

not necessarily a twist (5.3) of the odd Laplacian Ω̂2.

(iv) As a result, it turns out impossible to present the probability amplitude Φ∗ of

a non-Lagrangian theory as the exponential of some smooth function e
i
~

W which is non-

vanishing for every trajectory. The amplitude, being defined by the generalized Schwinger-

Dyson equation (3.17), can be a more general distribution on the space of all histories. For

example, the classical amplitude (1.13) vanishes everywhere except a classical solution.

As a final remark let us note that the proposed method, being applicable for covari-

ant quantization of non-Lagrangian dynamics, can be also useful for in-depth study of

gauge anomalies in conventional Lagrangian or Hamiltonian theories. Recall that in the

BV-quantization, the anomalies manifest themselves as obstructions to solvability of the

quantum master equation (5.5). In particular, the 1-loop anomaly is given by the modu-

lar class [∆W0] of the BRST-cohomology associated with the classical BRST-differential

δ = (W0, · ). Notice that the δ-cocycle ∆W0 has ghost number 1 and is linear in the gauge

algebra generators R as well as the higher structure functions (see (3.32)). Contrary to

this, in the operator BFV-BRST quantization the same anomaly arises as violation of the

nilpotency condition Ω̂2 = 0 by quantum corrections which are obviously bilinear in the

structure functions and have ghost number 2. So it might be not obvious in general how to

relate these anomalies to each other. Moreover, in the operator quantization the very ex-

istence of anomalies depends crucially on the quantization scheme applied, not to mention

their specific form. For instance, the 1-loop anomalies may occur in the Wick quantization

but never in the Weyl one (see e.g. [9, 11]). What is a precise Lagrangian analogue for dif-

ferent symbols of the BRST operator is yet to be explored, but the proposed quantization

scheme offers an alternative way to handle this problem. The point is that the gauge sector
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of the “Lagrangian BRST charge” (3.29) is quite similar to the Hamiltonian BRST charge

constructed by the constraints R’s, with the only difference that the former is defined in

the space of all histories while the latter corresponds to a fixed time moment. Both of these

BRST operators obey the same master equation, Ω̂2 = 0, leading to the same structure of

quantum anomalies. The different symbols of operators on the genuine phase space of the

system are then imitated by different symbols on the cotangent bundle of the space of all

histories. In summary, the proposed quantization scheme combines the explicit covariance

of the BV-quantization with the possibility to work with different symbols of the BRST

operator, as is the case in the BFV-BRST-quantization. Besides, the proposed method

extends these advantages beyond the reach of the BFV and BV schemes, making possible

to explore quantum effects, including anomalies, in the theories admitting no Lagrangian

formulation.
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